Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
2.
Cell Mol Life Sci ; 81(1): 145, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498222

RESUMO

Cisplatin is a chemotherapy drug that causes a plethora of DNA lesions and inhibits DNA transcription and replication, resulting in the induction of apoptosis in cancer cells. However, over time, patients develop resistance to cisplatin due to repeated treatment and thus the treatment efficacy is limited. Therefore, identifying an alternative therapeutic strategy combining cisplatin treatment along with targeting factors that drive cisplatin resistance is needed. CRISPR/Cas9 system-based genome-wide screening for the deubiquitinating enzyme (DUB) subfamily identified USP28 as a potential DUB that governs cisplatin resistance. USP28 regulates the protein level of microtubule-associated serine/threonine kinase 1 (MAST1), a common kinase whose expression is elevated in several cisplatin-resistant cancer cells. The expression level and protein turnover of MAST1 is a major factor driving cisplatin resistance in many cancer types. Here we report that the USP28 interacts and extends the half-life of MAST1 protein by its deubiquitinating activity. The expression pattern of USP28 and MAST1 showed a positive correlation across a panel of tested cancer cell lines and human clinical tissues. Additionally, CRISPR/Cas9-mediated gene knockout of USP28 in A549 and NCI-H1299 cells blocked MAST1-driven cisplatin resistance, resulting in suppressed cell proliferation, colony formation ability, migration and invasion in vitro. Finally, loss of USP28 destabilized MAST1 protein and attenuated tumor growth by sensitizing cells to cisplatin treatment in mouse xenograft model. We envision that targeting the USP28-MAST1 axis along with cisplatin treatment might be an alternative therapeutic strategy to overcome cisplatin resistance in cancer patients.


Assuntos
Cisplatino , Neoplasias , Animais , Humanos , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proteínas Associadas aos Microtúbulos , Microtúbulos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Ubiquitina Tiolesterase
3.
J Nucl Med ; 65(3): 453-461, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302152

RESUMO

We investigated the longitudinal changes in cortical tau accumulation and their association with cognitive decline in patients in the Alzheimer disease (AD) continuum using 2-(2-([18F]fluoro)pyridin-4-yl)-9H-pyrrolo[2,3-b:4,5c']dipyridine ([18F]PI-2620) PET. Methods: We prospectively enrolled 52 participants (age, 69.7 ± 8.4 y; 18 men and 34 women): 7 with normal cognition, 28 with mild cognitive impairment, and 17 with AD. They all completed the [18F]PI-2620 and [18F]florbetaben PET, MRI, and neuropsychologic tests at baseline and, excepting the [18F]florbetaben PET, at the 1-y follow-up. Amyloid-ß (Aß) PET images were visually scored as positive (+) or negative (-). Patients on the AD continuum, including Aß+ mild cognitive impairment and AD, were classified into early-onset (EO+) (<65 y old) or late-onset (LO+) (≥65 y old) groups. [18F]PI-2620 PET SUV ratios (SUVRs) were determined by calculating the cerebral-to-inferior cerebellar ratio. Cortical volumes were calculated using 3-dimensional T1-weighted MRI. The correlation between tau accumulation progression and cognitive decline was also investigated. Results: The global [18F]PI-2620 PET SUVRs were 1.04 ± 0.07 in 15 Aß- patients, 1.18 ± 0.21 in 20 LO+ patients (age, 76.7 ± 3.8 y), and 1.54 ± 0.38 in 17 EO+ patients (age, 63.4 ± 5.4 y; P < 0.001) at baseline. The global SUVR increased over 1 y by 0.05 ± 0.07 (3.90%) and 0.13 ± 0.22 (8.41%) in the LO+ and EO+ groups, respectively, whereas in the Aß- groups, it remained unchanged. The EO+ group showed higher global and regional tau deposition than did the Aß- and LO+ groups (P < 0.05 for each) and rapid accumulation in Braak stage V (0.15 ± 0.25; 9.10% ± 12.27%; P = 0.016 and 0.008), Braak stage VI (0.08 ± 0.12; 7.16% ± 10.06%; P < 0.006 and 0.005), and global SUVR (P = 0.013) compared with the Aß- group. In the EO+ group, the changes in SUVR in Braak stages II-VI were strongly correlated with the baseline and changes in verbal memory (P < 0.03). The LO+ group showed higher tau accumulation in Braak stage I-IV areas than did the Aß- group (P < 0.001 for each). In the LO+ group, the change in SUVR in Braak stages III and IV moderately correlated with the change in attention (P < 0.05), and the change in SUVR in Braak stages V and VI moderately correlated with the change in visuospatial function (P < 0.005). Conclusion: These findings suggest that [18F]PI-2620 PET can be a biomarker to provide regional and chronologic information about tau pathology in the AD continuum.


Assuntos
Doença de Alzheimer , Compostos de Anilina , Piridinas , Estilbenos , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons
4.
Radiology ; 310(2): e231406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38411517

RESUMO

Background Chimeric antigen receptor (CAR) T cells are a promising cancer therapy; however, reliable and repeatable methods for tracking and monitoring CAR T cells in vivo remain underexplored. Purpose To investigate direct and indirect imaging strategies for tracking the biodistribution of CAR T cells and monitoring their therapeutic effect in target tumors. Materials and Methods CAR T cells co-expressing a tumor-targeting gene (anti-CD19 CAR) and a human somatostatin receptor subtype 2 (hSSTr2) reporter gene were generated from human peripheral blood mononuclear cells. After direct labeling with zirconium 89 (89Zr)-p-isothiocyanatobenzyl-desferrioxamine (DFO), CAR T cells were intravenously injected into immunodeficient mice with a CD19-positive and CD19-negative human tumor xenograft on the left and right flank, respectively. PET/MRI was used for direct in vivo imaging of 89Zr-DFO-labeled CAR T cells on days 0, 1, 3, and 7 and for indirect cell imaging with the radiolabeled somatostatin receptor-targeted ligand gallium 68 (68Ga)-DOTA-Tyr3-octreotide (DOTATOC) on days 6, 9, and 13. On day 13, mice were euthanized, and tissues and tumors were excised. Results The 89Zr-DFO-labeled CAR T cells were observed on PET/MRI scans in the liver and lungs of mice (n = 4) at all time points assessed. However, they were not visualized in CD19-positive or CD19-negative tumors, even on day 7. Serial 68Ga-DOTATOC PET/MRI showed CAR T cell accumulation in CD19-positive tumors but not in CD19-negative tumors from days 6 to 13. Notably, 68Ga-DOTATOC accumulation in CD19-positive tumors was highest on day 9 (mean percentage injected dose [%ID], 3.7% ± 1.0 [SD]) and decreased on day 13 (mean %ID, 2.6% ± 0.7) in parallel with a decrease in tumor volume (day 9: mean, 195 mm3 ± 27; day 13: mean, 127 mm3 ± 43) in the group with tumor growth inhibition. Enhanced immunohistochemistry staining of cluster of differentiation 3 (CD3) and hSSTr2 was also observed in excised CD19-positive tumor tissues. Conclusion Direct and indirect cell imaging with PET/MRI enabled in vivo tracking and monitoring of CAR T cells in an animal model. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Bulte in this issue.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Xenoenxertos , Radioisótopos de Gálio , Receptores de Somatostatina , Leucócitos Mononucleares , Distribuição Tecidual , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Modelos Animais de Doenças , Linfócitos T
5.
EJNMMI Res ; 14(1): 8, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252356

RESUMO

BACKGROUND: The increased expression of the nicotinic acetylcholine receptor (nAChR) in muscle denervation is thought to be associated with electrophysiological acetylcholine supersensitivity after nerve injury. Hence, we investigated the utility of the 18F-ASEM alpha7-nAChR targeting radiotracer as a new diagnostic method by visualizing skeletal muscle denervation in mouse models of sciatic nerve injury. METHODS: Ten-week-old C57BL/6 male mice were utilized. The mice were anesthetized, and the left sciatic nerve was resected after splitting the gluteal muscle. One week (n = 11) and three weeks (n = 6) after the denervation, 18F-ASEM positron emission tomography/magnetic resonance imaging (PET/MRI) was acquired. Maximum standardized uptake values (SUVmax) of the tibialis anterior muscle were measured for the denervated side and the control side. Autoradiographic evaluation was performed to measure the mean counts of the denervated and control tibialis anterior muscles at one week. In addition, immunohistochemistry was used to identify alpha7-nAChR-positive areas in denervated and control tibialis anterior muscles at one week (n = 6). Furthermore, a blocking study was conducted with methyllycaconitine (MLA, n = 5). RESULTS: 18F-ASEM PET/MRI showed significantly increased 18F-ASEM uptake in the denervated tibialis anterior muscle relative to the control side one week and three weeks post-denervation. SUVmax of the denervated muscles at one week and three weeks showed significantly higher uptake than the control (P = 0.0033 and 0.0277, respectively). The relative uptake by autoradiography for the denervated muscle was significantly higher than in the control, and immunohistochemistry revealed significantly greater alpha7-nAChR expression in the denervated muscle (P = 0.0277). In addition, the blocking study showed no significant 18F-ASEM uptake in the denervated side when compared to the control (P = 0.0796). CONCLUSIONS: Our results suggest that nAChR imaging with 18F-ASEM has potential as a noninvasive diagnostic method for peripheral nervous system disorders.

6.
PLoS One ; 19(1): e0296487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285695

RESUMO

Saengmaeksan (SMS), a representative oriental medicine that contains Panax ginseng Meyer, Liriope muscari, and Schisandra chinensis (1:2:1), is used to improve body vitality and enhance physical activity. However, there is limited scientific evidence to validate the benefits of SMS. Here, we investigated the in vitro and in vivo regulatory effects of SMS and its constituents on energy metabolism and the underlying molecular mechanisms. For this, quantitative real-time polymerase chain reaction, 3D holotomographic microscopy, western blotting, and glucose uptake experiments using 18F-fluoro-2-deoxy-D-glucose (18F-FDG) were performed using L6 cells to investigate in vitro energy metabolism changes. In addition, 18F-fluorocholine (18F-FCH) and 18F-FDG positron emission tomography/computed tomography (PET/CT) analyses, immunohistochemistry, and respiratory gas analysis were performed in mice post-endurance exercise on a treadmill. In the energy metabolism of L6 cells, a significant reversal in glucose uptake was observed in the SMS-treated group, as opposed to an increase in uptake over time compared to the untreated control group. Furthermore, P. ginseng alone and SMS significantly decreased the volume of lipid droplets. SMS also regulated the phosphorylation of extracellular signal-regulated kinase (ERK), phosphorylation of p38, mitochondrial morphology, and the expression of apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE/Ref-1) in H2O2-stimulated L6 cells. In addition, SMS treatment was found to regulate whole body and muscle energy metabolism in rats subjected to high-intensity exercise, as well as glucose and lipid metabolism in skeletal muscle. Therefore, SMS containing P. ginseng ameliorated imbalanced energy metabolism through oxidative stress-induced APE/Ref-1 expression. SMS may be a promising supplemental option for metabolic performance.


Assuntos
Hominidae , Panax , Ratos , Camundongos , Animais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18 , Panax/química , Peróxido de Hidrogênio , Glucose , Metabolismo Energético
7.
Clin Nucl Med ; 49(1): 27-36, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054497

RESUMO

PURPOSE: This study aimed to compare the diagnostic performances of 18 F-FDOPA PET/CT and 123 I-MIBG scintigraphy with SPECT/CT for detection of pheochromocytoma and paraganglioma (PPGL). PATIENTS AND METHODS: We conducted a prospective, single-institution comparative study. Patients suspected of having PPGL or those showing recurrence and/or distant metastasis of PPGL were enrolled. The primary objective was to affirm the noninferiority of 18 F-FDOPA PET/CT for diagnostic sensitivity. Both 123 I-MIBG scintigraphy with SPECT/CT (at 4 and 24 hours) and 18 F-FDOPA PET/CT (at 5 and 60 minutes after radiotracer administration) were performed. The final diagnosis was established either pathologically or via clinical follow-up. Nuclear physicians, unaware of the clinical data, undertook image analysis. RESULTS: Thirty-two patients were evaluated: 14 of 21 with an initial diagnosis and 9 of 11 with recurrence/metastasis had PPGLs in their final diagnoses. In patient-based analyses, 18 F-FDOPA PET/CT (95.7%) exhibited noninferior sensitivity compared with 123 I-MIBG SPECT/CT (91.3%), within the predetermined noninferiority margin of -12% by a 95% confidence interval lower limit of -10%. Both modalities showed no significant difference in specificity (88.9% vs 88.9%). In the region-based analysis for the recurrence/metastasis group, 18 F-FDOPA PET/CT demonstrated significantly higher sensitivity compared with 123 I-MIBG SPECT/CT (86.2% vs 65.5%, P = 0.031) and superior interobserver agreement (κ = 0.94 vs 0.85). The inclusion of an early phase in dual-phase 18 F-FDOPA PET/CT slightly improved diagnostic performance, albeit not to a statistically significant degree. CONCLUSIONS: 18 F-FDOPA PET/CT demonstrated noninferior sensitivity and comparable specificity to 123 I-MIBG SPECT/CT in the diagnosing PPGL. Notably, in the assessment of PPGL recurrence and metastasis, 18 F-FDOPA PET/CT outperformed 123 I-MIBG SPECT/CT in terms of both sensitivity and interobserver agreement.


Assuntos
Neoplasias das Glândulas Suprarrenais , Paraganglioma , Feocromocitoma , Humanos , 3-Iodobenzilguanidina , Neoplasias das Glândulas Suprarrenais/patologia , Paraganglioma/patologia , Feocromocitoma/diagnóstico por imagem , Feocromocitoma/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Cintilografia , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único
8.
Molecules ; 28(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138478

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative disease in which neuroinflammation and oxidative stress interact to contribute to pathogenesis. This study investigates the in vivo neuroprotective effects of a patented yeast extract lysate in a lipopolysaccharide (LPS)-induced neuroinflammation model. The yeast extract lysate, named aldehyde-reducing composition (ARC), exhibited potent antioxidant and anti-aldehyde activities in vitro. Oral administration of ARC at 10 or 20 units/kg/day for 3 days prior to intraperitoneal injection of LPS (10 mg/kg) effectively preserved dopaminergic neurons in the substantia nigra (SN) and striatum by preventing LPS-induced cell death. ARC also normalized the activation of microglia and astrocytes in the SN, providing further evidence for its neuroprotective properties. In the liver, ARC downregulated the LPS-induced increase in inflammatory cytokines and reversed the LPS-induced decrease in antioxidant-related genes. These findings indicate that ARC exerts potent antioxidant, anti-aldehyde, and anti-inflammatory effects in vivo, suggesting its potential as a disease-modifying agent for the prevention and treatment of neuroinflammation-related diseases, including Parkinson's disease.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Lipopolissacarídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Doenças Neuroinflamatórias , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Doenças Neurodegenerativas/metabolismo , Microglia
9.
Biochim Biophys Acta Gen Subj ; 1867(11): 130454, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689217

RESUMO

BACKGROUND: The solute carrier family 35 F2 (SLC35F2), belongs to membrane-bound carrier proteins that control various physiological functions and are activated in several cancers. However, the molecular mechanism regulating SLC35F2 protein turnover and its implication in cancer progression remains unexplored. Therefore, screening for E3 ligases that promote SLC35F2 protein degradation is essential during cancer progression. METHODS: The immunoprecipitation and Duolink proximity ligation assays (PLA) were used to determine the interaction between APC/CCdh1 and SLC35F2 proteins. A CRISPR/Cas9-mediated knockdown and rescue experiment were used to validate the functional significance of APC/CCdh1 on SLC35F2 protein stabilization. The ubiquitination function of APC/CCdh1 on SLC35F2 protein was validated using in vitro ubiquitination assay and half-life analysis. The role of APC/CCdh1 regulating SLC35F2-mediated tumorigenesis was confirmed by in vitro oncogenic experiments in HeLa cells. RESULTS: Based on the E3 ligase screen and in vitro biochemical experiments, we identified that APC/CCdh1 interacts with and reduces SLC35F2 protein level. APC/CCdh1 promotes SLC35F2 ubiquitination and decreases the half-life of SLC35F2 protein. On the other hand, the CRISPR/Cas9-mediated depletion of APC/CCdh1 increased SLC35F2 protein levels. The mRNA expression analysis revealed a negative correlation between APC/CCdh1 and SLC35F2 across a panel of cancer cell lines tested. Additionally, we demonstrated that depletion in APC/CCdh1 promotes SLC35F2-mediated cell proliferation, colony formation, migration, and invasion in HeLa cells. CONCLUSION: Our study highlights that APC/CCdh1 is a critical regulator of SLC35F2 protein turnover and depletion of APC/CCdh1 promotes SLC35F2-mediated tumorigenesis. Thus, we envision that APC/CCdh1-SLC35F2 axis might be a therapeutic target in cancer.

10.
Sci Rep ; 13(1): 15069, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700061

RESUMO

18F-FP-CIT is a high-resolution imaging marker of nigrostriatal neuronal integrity, differentiating Parkinsonism with loss of dopaminergic terminals (presynaptic Parkinsonian syndrome [PS]) from Parkinsonism without nigrostriatal degeneration (non-PS). We assessed the diagnostic accuracy of 18F-FP-CIT PET in patients with clinically uncertain PS (CUPS) at the first visit. Among the 272 patients who underwent 18F-FP-CIT PET imaging at the first visit between September 2008 and July 2012, 111 had CUPS (age, 62.6 ± 10.5 y; male:female, 45:66; symptom duration, 13.1 ± 8.8 months). Uncertainty criteria included only one of the three cardinal signs of Parkinsonism, two signs without bradykinesia, or atypical signs. The baseline clinical and 18F-FP-CIT PET imaging diagnostic accuracy was compared with the accuracy of clinical diagnosis after > 2-year follow-up. Nuclear medicine physicians assessed the 18F-FP-CIT PET images visually. Focal dopamine transporter binding deficit in the posterior putamen was considered PS. Bilateral symmetric striatum without focal deficit, suggesting normal 18F-FP-CIT PET, and focal deficits elsewhere in the striatum suggesting vascular Parkinsonism were considered non-PS. Seventy-nine patients had PS, and 32 did not. Baseline clinical diagnosis included PS in 45 patients, non-PS in 24, and inconclusive in 42. Among patients in whom initial clinical diagnosis (PS or non-PS) was possible, the sensitivity, specificity, and accuracy of the baseline clinical and 18F-FP-CIT PET imaging diagnoses were 54.4, 50.0, and 53.2%, and 98.7, 100, and 99.1%, respectively. The respective positive and negative predictive values were 95.6 and 66.7%, and 100 and 97.0%. Among those with initially inconclusive diagnosis, 64.2% were eventually diagnosed with PS while 35.7% were diagnosed with non-PS. The final clinical diagnosis of these patients all matched those made by 18F-FP-CIT PET imaging, except in one patient with scan without evidence of dopaminergic deficit (SWEDD). 18F-FP-CIT PET diagnosis was more accurate than clinical diagnosis, reducing the false-negative and inconclusive clinical diagnosis rates at baseline in patients with CUPS.


Assuntos
Doença de Parkinson Secundária , Transtornos Parkinsonianos , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Incerteza , Transtornos Parkinsonianos/diagnóstico por imagem , Dopamina , Tomografia por Emissão de Pósitrons
11.
Bioorg Med Chem ; 93: 117458, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634418

RESUMO

Aggressive pancreatic cancer is typically treated using chemotherapeutics to reduce the tumor pre-operatively and prevent metastasis post-operatively, as well as surgical approaches. In the present study, we synthesized a hydroxyl group-introduced chalcone derivative (1, IC50 = 32.1 µM) and investigated its potential as an anticancer drug candidate by evaluating its apoptosis-promoting effects on BXPC-3 cancer cells. The viability of BXPC-3 cells treated with 1 was measured using the water-soluble tetrazolium 1 reagent. BXPC-3 cells induced by 1 were stained with diverse probes or antibodies, such as ethidium homodimer-1, Hoechst, anti-Ki67, and MitoTracker. Protein expression was measured using an immunoblotting assay, and mRNA expression was determined using real-time polymerase chain reaction. Apoptotic molecular features, such as lipid accumulation and protein degradation, were monitored directly using stimulated Raman scattering microspectroscopy. Through incubation time- and concentration-dependent studies of 1, we found that it significantly reduced the proliferation and increased the number of apoptotic BXPC-3 cells. Compound 1 induced mitochondrial dysfunction, phosphorylation of p38, and caspase 3 cleavage. These results indicate that 1 is a potential therapeutic agent for pancreatic cancer, providing valuable insights into the development of new anticancer drug candidates.


Assuntos
Chalcona , Chalconas , Neoplasias Pancreáticas , Humanos , Chalconas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Apoptose , Pâncreas , Chalcona/farmacologia , Neoplasias Pancreáticas
12.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569796

RESUMO

Microplastics (MPs) are recognized as environmental pollutants with potential implications for human health. Considering the rapid increase in obesity rates despite stable caloric intake, there is a growing concern about the link between obesity and exposure to environmental pollutants, including MPs. In this study, we conducted a comprehensive investigation utilizing in silico, in vitro, and in vivo approaches to explore the brain distribution and physiological effects of MPs. Molecular docking simulations were performed to assess the binding affinity of three plastic polymers (ethylene, propylene, and styrene) to immune cells (macrophages, CD4+, and CD8+ lymphocytes). The results revealed that styrene exhibited the highest binding affinity for macrophages. Furthermore, in vitro experiments employing fluorescence-labeled PS-MPs (fPS-MPs) of 1 µm at various concentrations demonstrated a dose-dependent binding of fPS-MPs to BV2 murine microglial cells. Subsequent oral administration of fPS-MPs to high-fat diet-induced obese mice led to the co-existence of fPS-MPs with immune cells in the blood, exacerbating impaired glucose metabolism and insulin resistance and promoting systemic inflammation. Additionally, fPS-MPs were detected throughout the brain, with increased activation of microglia in the hypothalamus. These findings suggest that PS-MPs significantly contribute to the exacerbation of systemic inflammation in high-fat diet-induced obesity by activating peripheral and central inflammatory immune cells.

13.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499198

RESUMO

Obesity is a chronic peripheral inflammation condition that is strongly correlated with neurodegenerative diseases and associated with exposure to environmental chemicals. The aryl hydrocarbon receptor (AhR) is a ligand-activated nuclear receptor activated by environmental chemical, such as dioxins, and also is a regulator of inflammation through interacting with nuclear factor (NF)-κB. In this study, we evaluated the anti-obesity and anti-inflammatory activity of HBU651, a novel AhR antagonist. In BV2 microglia cells, HBU651 successfully inhibited lipopolysaccharide (LPS)-mediated nuclear localization of NF-κB and production of NF-κB-dependent proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6. It also restored LPS-induced mitochondrial dysfunction. While mice being fed a high-fat diet (HFD) induced peripheral and central inflammation and obesity, HBU651 alleviated HFD-induced obesity, insulin resistance, glucose intolerance, dyslipidemia, and liver enzyme activity, without hepatic and renal damage. HBU651 ameliorated the production of inflammatory cytokines and chemokines, proinflammatory Ly6chigh monocytes, and macrophage infiltration in the blood, liver, and adipose tissue. HBU651 also decreased microglial activation in the arcuate nucleus in the hypothalamus. These findings suggest that HBU651 may be a potential candidate for the treatment of obesity-related metabolic diseases.


Assuntos
Dieta Hiperlipídica , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Citocinas , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Obesos , NF-kappa B/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Necrose Tumoral alfa
14.
Antioxidants (Basel) ; 11(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36358481

RESUMO

Chronic exposure to some environmental polluting chemicals (EPCs) is strongly associated with metabolic syndrome, and insulin resistance is a major biochemical abnormality in the skeletal muscle in patients with metabolic syndrome. However, the causal relationship is inconsistent and little is known about how EPCs affect the insulin signaling cascade in skeletal muscle. Here, we investigated whether exposure to 100 pM of 2,3,7,8-tetrachlorodibenzodioxin (TCDD) as a low dose of dioxin induces insulin resistance in C2C12 myocytes. The treatment with TCDD inhibited the insulin-stimulated glucose uptake and translocation of glucose transporter 4 (GLUT4). The low-dose TCDD reduced the expression of insulin receptor ß (IRß) and insulin receptor substrate (IRS)-1 without affecting the phosphorylation of Akt. The TCDD impaired mitochondrial activities, leading to reactive oxygen species (ROS) production and the blockage of insulin-induced Ca2+ release. All TCDD-mediated effects related to insulin resistance were still observed in aryl hydrocarbon receptor (AhR)-deficient myocytes and prevented by MitoTEMPO, a mitochondria-targeting ROS scavenger. These results suggest that low-dose TCDD stress may induce muscle insulin resistance AhR-independently and that mitochondrial oxidative stress is a novel therapeutic target for dioxin-induced insulin resistance.

15.
J Clin Neurol ; 18(4): 437-446, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35796269

RESUMO

BACKGROUND AND PURPOSE: Alzheimer's disease (AD) does not always mean amyloid positivity. [18F]THK-5351 has been shown to be able to detect reactive astrogliosis as well as tau accompanied by neurodegenerative changes. We evaluated the [18F]THK-5351 retention patterns in positron-emission tomography (PET) and the clinical characteristics of patients clinically diagnosed with AD dementia who had negative amyloid PET findings. METHODS: We performed 3.0-T magnetic resonance imaging, [18F]THK-5351 PET, and amyloid PET in 164 patients with AD dementia. Amyloid PET was visually scored as positive or negative. [18F]THK-5351 PET were visually classified as having an intratemporal or extratemporal spread pattern. RESULTS: The 164 patients included 23 (14.0%) who were amyloid-negative (age 74.9±8.3 years, mean±standard deviation; 9 males, 14 females). Amyloid-negative patients were older, had a higher prevalence of diabetes mellitus, and had better visuospatial and memory functions. The frequency of the apolipoprotein E ε4 allele was higher and the hippocampal volume was smaller in amyloid-positive patients. [18F]THK-5351 uptake patterns of the amyloid-negative patients were classified into intratemporal spread (n=10) and extratemporal spread (n=13). Neuropsychological test results did not differ significantly between these two groups. The standardized uptake value ratio of [18F]THK-5351 was higher in the extratemporal spread group (2.01±0.26 vs. 1.61±0.15, p=0.001). After 1 year, Mini Mental State Examination (MMSE) scores decreased significantly in the extratemporal spread group (-3.5±3.2, p=0.006) but not in the intratemporal spread group (-0.5±2.8, p=0.916). The diagnosis remained as AD (n=5, 50%) or changed to other diagnoses (n=5, 50%) in the intratemporal group, whereas it remained as AD (n=8, 61.5%) or changed to frontotemporal dementia (n=4, 30.8%) and other diagnoses (n=1, 7.7%) in the extratemporal spread group. CONCLUSIONS: Approximately 70% of the patients with amyloid-negative AD showed abnormal [18F]THK-5351 retention. MMSE scores deteriorated rapidly in the patients with an extratemporal spread pattern.

16.
Diagnostics (Basel) ; 12(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35626428

RESUMO

Imaging techniques for diagnosing muscle atrophy and sarcopenia remain insufficient, although various advanced diagnostic methods have been established. We explored the feasibility of 18F-fluorocholine (18F-FCH) positron emission tomography/computed tomography (PET/CT) for evaluating skeletal muscle atrophy, as an imaging technique that tracks choline level changes in muscles. Cell uptake in L6 cells by 18F-FCH was performed in a complete medium containing serum (untreated group, UN) and a serum-free medium (starved group, ST). Small-animal-dedicated PET/CT imaging with 18F-FCH was examined in in-vivo models with rats that were starved for 2 days to cause muscle atrophy. After the hind limbs were dissected, starvation-induced in-vivo models were anatomically confirmed by reverse-transcription polymerase chain reaction to evaluate the expression levels of the atrophy markers muscle RING-finger protein-1 (MuRF-1) and atrogin-1. 18F-FCH uptake was lower in the starvation-induced cells than in the untreated group, and in-vivo PET uptake also revealed a similar tendency (the average standardized uptake value (SUVmean) = 0.26 ± 0.06 versus 0.37 ± 0.07, respectively). Furthermore, the expression levels of MuRF-1 and atrogin-1 mRNA were significantly increased in the starvation-induced muscle atrophy of rats compared to the untreated group. 18F-FCH PET/CT may be a promising tool for diagnosing skeletal muscle atrophy.

17.
Front Aging Neurosci ; 14: 807903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309883

RESUMO

Although skull-stripping and brain region segmentation are essential for precise quantitative analysis of positron emission tomography (PET) of mouse brains, deep learning (DL)-based unified solutions, particularly for spatial normalization (SN), have posed a challenging problem in DL-based image processing. In this study, we propose an approach based on DL to resolve these issues. We generated both skull-stripping masks and individual brain-specific volumes-of-interest (VOIs-cortex, hippocampus, striatum, thalamus, and cerebellum) based on inverse spatial normalization (iSN) and deep convolutional neural network (deep CNN) models. We applied the proposed methods to mutated amyloid precursor protein and presenilin-1 mouse model of Alzheimer's disease. Eighteen mice underwent T2-weighted MRI and 18F FDG PET scans two times, before and after the administration of human immunoglobulin or antibody-based treatments. For training the CNN, manually traced brain masks and iSN-based target VOIs were used as the label. We compared our CNN-based VOIs with conventional (template-based) VOIs in terms of the correlation of standardized uptake value ratio (SUVR) by both methods and two-sample t-tests of SUVR % changes in target VOIs before and after treatment. Our deep CNN-based method successfully generated brain parenchyma mask and target VOIs, which shows no significant difference from conventional VOI methods in SUVR correlation analysis, thus establishing methods of template-based VOI without SN.

18.
Nutr Res Pract ; 16(1): 33-45, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35116126

RESUMO

BACKGROUND/OBJECTIVES: Ginseng extract (GSE) and taurine (TR) are widely used antifatigue resources in functional foods. However, the mechanism underlying the antifatigue effects of GSE and TR are still unclear. Hence, we investigated whether GSE and TR have synergistic effects against fatigue in mice. MATERIALS/METHODS: L6 cells were treated with different concentrations of TR and GSE, and cell viability was determined using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium. Oxidative stress was analyzed by immunocytochemistry using MitoTracker™ Red FM and an anti-8-oxoguanine antibody. Respiratory gas analysis was performed to investigate metabolism. Expression of an activated protein kinase was analyzed using immunohistochemistry. Gene expression of cluster of differentiation 36 and pyruvate dehydrogenase lipoamide kinase isozyme 4 was measured using reverse transcription-polymerase chain reaction. Mice were orally administered TR, GSE, or their combination for 30 days, and then fatigue-related parameters, including lactate, blood urea nitrogen, and glycogen, were measured after forced swimming. RESULTS: TR and GSE reduced oxidative stress levels in hydrogen peroxide-stimulated L6 cells and enhanced the oxygen uptake and lipid metabolism in mice after acute exercise. After oral administration of TR or GSE for 30 days, the fatigue-related parameters did not change in mice. However, the mice administered GSE (400 mg/kg/day) alone for 30 days could swim longer than those from the other groups. Further, no synergistic effect was observed after the swimming exercise in mice treated with the TR and GSE combination for 30 days. CONCLUSIONS: Taken together, our data suggest that TR and GSE may exert antifatigue effects in mice after acute exercise by enhancing oxygen uptake and lipid oxidation.

19.
Yonsei Med J ; 63(3): 259-264, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35184428

RESUMO

PURPOSE: Neuroinflammation is considered an important pathway associated with several diseases that result in cognitive decline. 18F-THK5351 positron emission tomography (PET) signals might indicate the presence of neuroinflammation, as well as Alzheimer's disease-type tau aggregates. ß-amyloid (Aß)-negative (Aß-) amnestic mild cognitive impairment (aMCI) may be associated with non-Alzheimer's disease pathophysiology. Accordingly, we investigated associations between 18F-THK5351 PET positivity and cognitive decline among Aß- aMCI patients. MATERIALS AND METHODS: The present study included 25 amyloid PET negative aMCI patients who underwent a minimum of two follow-up neuropsychological evaluations, including clinical dementia rating-sum of boxes (CDR-SOB). The patients were classified into two groups: 18F-THK5351-positive and -negative groups. The present study used a linear mixed effects model to estimate the effects of 18F-THK5351 PET positivity on cognitive prognosis among Aß- aMCI patients. RESULTS: Among the 25 Aß- aMCI patients, 10 (40.0%) were 18F-THK5351 positive. The patients in the 18F-THK5351-positive group were older than those in the 18F-THK5351-negative group (77.4±2.2 years vs. 70.0±5.5 years; p<0.001). There was no difference between the two groups with regard to the proportion of apolipoprotein E ε4 carriers. Interestingly, however, the CDR-SOB scores of the 18F-THK5351-positive group deteriorated at a faster rate than those of the 18F-THK5351-negative group (B=0.003, p=0.033). CONCLUSION: The results of the present study suggest that increased 18F-THK5351 uptake might be a useful predictor of poor prognosis among Aß- aMCI patients, which might be associated with increased neuroinflammation (ClinicalTrials.gov NCT02656498).


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Aminopiridinas , Peptídeos beta-Amiloides/metabolismo , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons , Quinolinas
20.
J Nucl Med ; 63(10): 1586-1591, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35086893

RESUMO

We aimed to explore whether the imaging of antiporter system xC - of immune cells with (4S)-4-(3-18F-fluoropropyl)-l-glutamate (18F-FSPG) PET can assess inflammatory bowel disease (IBD) activity in murine models and patients (NCT03546868). Methods: 18F-FSPG PET imaging was performed to assess IBD activity in mice with dextran sulfate sodium-induced and adoptive T-cell transfer-induced IBD and a cohort of 20 patients at a tertiary care center in South Korea. Immunohistochemical analysis of system xC - and cell surface markers was also studied. Results: Mice with experimental IBD showed increased intestinal 18F-FSPG uptake and xCT expression in cells positive (+) for CD11c, F4/80, and CD3 in the lamina propria, increases positively associated with clinical and pathologic disease activity. 18F-FSPG PET studies in patients, most of whom were clinically in remission or had mildly active IBD, showed that PET imaging was sufficiently accurate in diagnosing endoscopically active IBD and remission in patients and bowel segments. 18F-FSPG PET correctly identified all 9 patients with superficial or deep ulcers. Quantitative intestinal 18F-FSPG uptake was strongly associated with endoscopic indices of IBD activity. The number of CD68+xCT+ and CD3+xCT+ cells in 22 bowel segments from patients with ulcerative colitis and the number of CD68+xCT+ cells in 7 bowel segments from patients with Crohn disease showed a significant positive association with endoscopic indices of IBD activity. Conclusion: The assessment of system xC - in immune cells may provide diagnostic information on the immune responses responsible for chronic active inflammation in IBD. 18F-FSPG PET imaging of system xC - activity may noninvasively assess the IBD activity.


Assuntos
Ácido Glutâmico , Doenças Inflamatórias Intestinais , Animais , Antiporters , Sulfato de Dextrana , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Camundongos , Tomografia por Emissão de Pósitrons/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...